Mengeluarkan suku-suku dari bawah akar.LatihanSoal Pts Tentukan himpunan penyelesaian x 2 + 6x- 16 = 0 dengan cara melengkapkan kuadrat sempurna Tentukan himpunan penyelesaian 2x 2 + 9x- 5 = 0 dengan menggunakan metode rumus ABC Tentukan persamaan kuadrat yang akarnya diketahui-5 dan 1 Susunlah persamaan kuadrat yang akarnya 8 dan -5 Tentukan nilai dikriminan dan jenis akar Kelas 9 SMPPERSAMAAN KUADRATAkar Persamaan KuadratAkar-akar persamaan kuadrat 2x^2 +mx + 16 = 0 adalah alpha dan beta. Jika alpha = 2beta dan alpha, beta positif, maka nilai m = .... A. -12 D. 8 B. -6 E. 12 C. 6Akar Persamaan KuadratPERSAMAAN KUADRATALJABARMatematikaRekomendasi video solusi lainnya0424Akar-akar persamaan x^3 - 4x^2 + x - 4 = 0 adalah x1, x2,...0244Jika akar-akar persamaan kuadrat 2x^2 + 5x - 3 = 0 adalah...0314Persamaan 2x^3 + 3x^2 + px + 8 = 0 mempunyai sepasang aka...Teks videodi sini ada soal akar-akar persamaan kuadrat 2 x kuadrat ditambah 6 x ditambah 16 sama dengan nol adalah Alfa dan Beta jika Alfa = 2 beta dan Alfa dan beta ini bernilai positif maka nilai m nya adalah untuk mengerjakan ini kita akan gunakan konsep persamaan kuadrat Gimana bentuk umumnya yaitu AX kuadrat + BX + c = 0 dari soal ini bisa kita tentukan bahwa nilai a-nya = 2 b = m dan C nya = 6 di sini kita akan gunakan rumus Alfa ditambah beta = min b per a lalu Alfa dikali beta = C Nah pertama-tama kita akan cari dulu nilai dari Alfa ditambah beta dan Alfa dikali beta Alfa ditambah beta kan terus saya tadi min b per aDisini kita tulis Min m per 2 Nah dari soal ini diketahui bahwa alfanya ini adalah 2 beta berarti di sini bisa kita tulis 2 beta beta = Min m per 2 jadinya kan 3 beta = Min m per 2 berarti B tanya sama dengan 3 nya ini kita kalikan dengan 2 berarti Min m per 6 nah ini adalah nilai dari B tanya. Nah kan aku udah dapat nilai B tanya sekarang kita cari nilai Alfa nya kan alfanya ini Alfa = 2 beta berarti Alfa = 2 kali B tanya yaitu Min m per 6 jadi Alfa = min 2 m per 6 atau disederhanakan menjadi mind MP3 nanti kita udah dapet nilai Alfa dan Beta nyaselanjutnya kita cari nilai dari Alfa dikali beta Alfa dikali B rumusnya tadi adalah C per AC nya adalah 16 per a nya yaitu 2 berarti Alfa dikali B tanya sama dengan 8 Nah tadi kita udah dapet nilai Alfa dan Beta sekarang kita masukin disini alfanya adalah Min m per 3 dikali B yaitu Min m per 6 berarti = 8 nah ini kita kalikan nih berarti jadinya m kuadrat per 6 * 3 itu 18 = 8 Berarti M kuadrat = ini kita kali silang anakan m kuadrat dikali sini kan 1 nih hasilnya tetap yang kuadrat lalu 8 * 18 hasilnya yaitu 144 berarti di sini m-nya = akar dari 144 makasama dengan plus minus 12 jadi nilai m yang memenuhi nya adalah m = min 12 Nah sekarang kita coba nih kalau kita masukin atm-nya ini MIN 12 ke rumus alfanya Alfa = Min dalam kurung m nya Kita masukin MIN 12 per 3 = 12 / 3 yaitu 4 lalu bertanya = Min m nya Kita masukin lagi MIN 12 per 6 = 12 / 6 itu 2 jadi di sini kalau kita masukin m min 12 maka nilai Alfa nya positif dan nilai bedanya positif sesuai dengan syarat nya disini yaitu Alfa dan Beta nya positif maka nilai m yang memenuhi adalah m = min 12 jawabannya adalah yang sudah selesai sampai jumpa lagi pada Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul PersamaanKuadrat Bab 2 A. Bentuk Umum Persamaan Kuadrat ax2 + bx + c = 0 2ay + by + c = 0 untuk a, b, c ∈ bilangan real x, y variabel dan a ≠ 0 Rumus diskriminan: D = b2 – 4ac B. Menentukan Akar-Akar Persamaan Kuadrat Jika x 1 dan x 2 adalah akar-akar dari persamaan kuadrat ax2 + bx +c = 0 maka akar-akar tersebut dapat diperoleh dengan Materi Persamaan Kuadrat 2x² + mx + 16 = 0 Persamaan Ingat ! ax² + bx + c = 0 x₁ + x₂ = -b/ax₁ . x₂ = c/a 2x² + mx + 16 = 0α + β = -m/22β + β = -m/23β = -m/2 β = -m/6 m = -6β α = 2βα . β = 82β . β = 82β² = 8β² = 4β = 2 Jadi , Nilai m yang memenuhi m = -6β m = -6 . 2m = -12 MENYELESAIKANPERSAMAAN KUADRAT Melissa Ananda Tambunan FMIPA Universitas Negeri Medan, anandamelissa6@ Sebuah persamaan yang memiliki variabel dengan pangkat tertinggi sama
ContohSoal Menyusun Persamaan Kuadrat Baru Jika x 1 dan x 2 adalah akar-akar dari persamaan kuadrat x 2 − 4x + 2 = 0, maka tentukanlah persamaan kuadrat baru yang akar-akarnya merupakan pangkat tiga dari akar-akar persamaan kuadrat tersebut. Pembahasan : Untuk membandingkan hasil yang akan kita peroleh, kita akan coba membahas soal di atas
PangkatPecahan - EKSPONEN (AKAR DAN PANGKAT) Upload Loading Pangkat Pecahan Dalam dokumen Buku Ajar Matematika (Halaman 82-0) BAB 5 EKSPONEN (AKAR DAN PANGKAT) D. Pangkat Pecahan Agar akar-akar XI dan x2 dari persamaan kuadrat 2x 2 + 8x + m = 0 memenuhi 7x1 — 20 haruslah m = A. 11 B. -12 C. 12 D. 18 E. 20 . Persamaan
EccF.